0957-4166/95 \$9.50+0.00

0957-4166(95)00124-7

A Simple Preparative Method for Optically Active Glycidic Esters

Fumio Toda,* Hideaki Takumi and Kenya Tanaka

Department of Applied Chemistry, Faculty of Engineering, Ehime University,

Matsuyama, Ehime 790, Japan

Abstract: Some optically active glycidic esters were prepared by resolution through inclusion complexation with a chiral host compound, (R,R)-(-)-trans-4,5-bis(hydroxydiphenylmethyl)-2,2-dimethyl-1,3-dioxacyclopentane, and its derivatives.

Optically active glycidic esters are useful synthon for various biologically active substances such as leukotriene B₄, ¹ kijanolide, ² tetronolide, ² and chlorothricolide. ² Esterification of optically active glycidic acid which had been prepared from serine through a substitution of the amino group with bromine followed by dehydrobromination with KOH gives optically active glycidic esters. ³ Optically active glycidic acids can also be prepared by an asymmetric epoxidation ⁴ of allylic alcohols followed by oxidation with RuCl₃/NaIO₄. ⁵ However, glycidic acid is not very stable and is difficult to manipulate, and a special modifications are necessary for the esterification. ³

We report herein a simple preparative method of optically active glycidic esters by optical resolution through inclusion complexation with an optically active host compound which has been derived from tartaric acid.

When a solution of (R,R)-(-)-trans-2,3-bis[hydroxydiphenylmethyl]-1,4-dioxaspiro-[4.4]nonane $(1\mathbf{a})^6$ (4.29 g, 8.71 mmol) and rac-ethyl 2,2-diethylglycidate $(2\mathbf{g})$ (1.5 g, 8.71 mmol) in ether (7.5 ml)-hexane (2 ml) was kept at room temperature for 12 h, a 2:1 inclusion complex formed of $\mathbf{1a}$ and (+)- $\mathbf{2a}$ (3.18 g, 63% yield) as colorless prisms, which upon heating at 170 °C/2 mmHg gave (+)- $\mathbf{2a}$ of 100% ee (0.47 g, 62% yield, $[\alpha]_D$ +37.4 (c 0.5, CHCl₃)). From the ether-hexane solution left after separation of the 2:1 inclusion crystal of $\mathbf{1a}$ and (+)- $\mathbf{2g}$, (-)- $\mathbf{2g}$ of 45% ee (1.03 g, 137% yield, $[\alpha]_D$ -16.8 (c 0.5, CHCl₃)) was isolated. The enantiomeric excess was determined by 1 H NMR spectrum measurement in the presence of the chiral shift reagent, (+)-Eu(hfc)₃. By the same inclusion complexation with $\mathbf{1a}$ and its analog $\mathbf{1b}^6$ in ether, some other glycidic esters (2a-f, 2h-j) were resolved (Table 1). In most cases, the efficiency of the resolution is very good.

$$R^1$$
 CO_2R^4

a: $R^1 = R^2 = R^3 = R^4 = Me$ b: $R^1 = R^2 = R^3 = Me$; $R^4 = Et$ c: $R^1 = R^2 = R^4 = Me$; $R^3 = Et$ d: $R^1 = R^2 = R^4 = Me$; $R^3 = Et$ d: $R^1 = R^2 = R^4 = Me$; $R^3 = R^4 = Et$ e: $R^1 = R^2 = R^4 = Me$; $R^3 = H$; $R^4 = Et$ e: $R^1 = R^2 = R^4 = Me$; $R^3 = H$ e: $R^1 = R^3 = R^4 = Me$; $R^2 = H$ 1060 F. TODA et al.

Table 1. Resolution of 2a-j through inclusion complexation with 1 by recrystallization from solvent^a

1	2	mp of 2:1 inclusion complex (°C)	product	yield (%)	optical purity ^g (% ee)
1a	2a	b,c	(+)-2a	9	100
1a	2b	159-162 ^f	(+)- 2 b	37	10
1b	2b	205-207 ^f	(+)- 2b	38	18
1a	2c	136-146 ^f	(-)- 2 c	72	10
1a	2d	b,f	(+)- 2d	69	66
1b	2d	204-207 ^f	(+)- 2d	40	47
1a	2e	160-163 ^d	(+)-2e	63	100
1b	2f	b,f	(+)- 2f	32	96
1a	2g	b,f	(+)-2g	62	100
1b	2g	b,e	(+)-2g	23	100
1a	2h	b,f	(-)-2h	31	100
1b	2h	201-203 ^f	(-)- 2h	51	100
1b	2i	203-206 ^f	(-)- 2i	63	54
1a	2 j	b,e	(+)- 2j	42	93

^a Inclusion complexations with the host **1a** and **1b** were carried out in ether-hexane and toluene-hexane, respectively.

^b Clear mp was not observed.

^c Inclusion complex was purified by three recrystallizations from the same solvent as that used for inclusion complexation.

^d Inclusion complex was purified by two recrystallizations from the same solvent as that used for inclusion complexation.

^e Inclusion complex was purified by one recrystallization from the same solvent as that used for inclusion complexation.

f Inclusion complex was not purified by recrystallization.

^g Enantiomeric excess was determined by mesurement of ¹ NMR spectrum in the presence of chiral shift reagent, (+)-Eu(hfc)₃.

Table 2.Resolution of 2a-2j through inclusion complexation with 1 by suspension in hexane or water

1	2	product	hexane		H ₂ O	
			yield (%)	optical purity ^a (% ee)	yield (%)	optical purity ^a (% ee)
1a	2a	(+)-2a	10	100	11	100
1a	2b	(+)- 2b	b	_	81	0
1b	2 b	(+)- 2b	b	_	b	
1a	2c	(-)- 2c	b		74	0
1a	2d	(+)- 2d	b		b	_
1b	2d	(+)- 2d	72	43	90	45
1a	2e	(+)- 2 e	91	70	73	86
1b	2f	(+)-2f	54	100	78	100
1a	2g	(+)-2g	55	100	91	100
1b	2g	(+)-2g	95	100	95	100
1a	2h	(-)-2h	b	_	46	90
1b	2h	(-)-2h	80	33	70	34
1b	2i	(-)- 2i	70	15	89	30
1a	2j	(+)-2j	75	41	36	71

^a Enantiomeric excess was determined by mesurement of ¹ NMR spectrum in the presence of chiral shift reagent, (+)-Eu(hfc)₃.

^b No inclusion complexation occurred.

1062 F. TODA et al.

The inclusion complexation of 1 and 2 can also be carried out by the suspension method in hexane or water. ⁷ For example, when a suspension of powdered 1a (1.72 g, 3.48 mmol) and oily 2g (0.6 g, 3.48 mmol) in hexane (4.3 ml) was stirred at room temperature for 24 h, a 2:1 inclusion complex of 1a and (+)-2g was formed as colorless powder (1.77 g, 88% yield), which upon heating at 170 °C/2 mmHg gave (+)-2g of 100% ee (0.17 g, 55% yield, $[\alpha]_D$ +35.9 (c 0.5, CHCl₃)). From the hexane solution left after separation of the 2:1 inclusion complex of 1a and (+)-2g, (-)-2g of 40% ee (0.43 g, 145% yield, $[\alpha]_D$ -14.8 (c 0.5, CHCl₃)) was obtained. The suspension method can be applied to the resolution of some other glycidic esters (Table 2).

Resolution by a similar suspension method in water is also useful. When a suspension of powdered 1a (1.72 g, 3.48 mmol) and oily 2g (0.6 g, 3.48 mmol) in water (4.3 ml) containing hexadecyl-trimethylammonium bromide (17.2 mg) as a surfactant was stirred at room temperature for 24 h, a 2:1 inclusion complex of 1a and (+)-2g was obtained as colorless powder (1.83 g, 91% yield), which upon heating at 170 °C/2 mmHg gave (+)-2g of 100% ee (0.27 g, 91% yield, $[\alpha]_D$ +34.7 (c 0.5, CHCl₃)). From the aqueous layer left after the separation of the 2:1 inclusion complex of 1a and (+)-2g, (-)-2g of 85% ee (0.33 g, 109% yield, $[\alpha]_D$ -31.2 (c 0.5, CHCl₃)) was obtained by distillation. The suspension method in water is also applicable to the resolution of some other glycidic esters (Table 2).

A rather simple resolution method by fractional distillation in the presence of chiral host compound⁷ is also available to glycidic esters. Heating of a mixture of powdered $\mathbf{1a}$ (1 g, 2.03 mmol) and oily $\mathbf{2g}$ (0.36 g, 2.03 mmol) at 80 °C/2 mmHg gave (-)- $\mathbf{2g}$ of 51% ee (0.23 g, 129% yield, $[\alpha]_D$ -18.9 (c 0.5, CHCl₃)). Further heating at 170 °C/2 mmHg of the residue left after distillation of (-)- $\mathbf{2g}$ gave (+)- $\mathbf{2g}$ of 92% ee (0.13 g, 74% yield, $[\alpha]_D$ +34.2 (c 0.52, CHCl₃)). Since (+)- $\mathbf{2g}$ forms an inclusion complex with $\mathbf{1a}$ by mixing $\mathbf{1a}$ and \mathbf{rac} - $\mathbf{2g}$, the uncomplexed (-)- $\mathbf{2g}$ evaporates at relatively low temperature and the complexed (+)- $\mathbf{2g}$ evaporates at higher temperature.

Acknowlegements. We thank the Ministry of Education, Science and Culture, Japan, for Grant-in-Aid for Scientific Research on Priority Areas, No. 06242105.

References

- 1. C.-Q. Han, D. Ditulloi, Y.-F. Wang, and C. J. Sih, J. Org. Chem., 1986, 51, 1253.
- 2. W. R. Roush and B. B. Brown, J. Org. Chem., 1992, 57, 3380.
- 3. M. Larcheveque and Y. Petit, Tetrahedron Lett., 1987, 28, 1993.
- P. H. J. Carlsen, T. Katsuki, V. S. Martin, and K. B. Sharpless, J. Org. Chem., 1981, 46, 3936.
- 5. D. Pons, M. Savignac, and J.-P. Genet, Tetrahedron Lett., 1990, 31, 5023.
- D. Seebach, A. K. Beck, R. Imwinkelried, S. Roggo, and A. Wonnacott, Helv. Chim. Acta, 1987, 70, 954; F. Toda and K. Tanaka, Tetrahedron Lett., 1988, 29, 551.
- 7. F. Toda and Y. Tohi, J. Chem. Soc., Chem. Commun., 1993, 1238.

(Received in Japan 20 March 1995)